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SCME PROBLEMS OF BUT TRANSFER II ROCKETS 

Abstract 

Seme of the problem« ooanootod «1th tte heating of rookot part« by tte flowing 
gas or« treated by «ho method outlined by Hirschfelder, Garten, «ad Bougen, bat 
using tte Heevi«ide operational calculus for solving tte differential equation*. 
TteM problem« ere related to tte performance of rookoto through tte offoot of heat 
transfer OB the ooollng of tte propellent gas, on tte strength of tte ohaaber «all« 
and trap» and on the stability of high explosive oarried by tte rookoto«   Application 
of tte oaloulations to tte 4-1/2 la« rookot indioatoa that tte trap wires reach on 
average temperature of more than 1000°C la tte hottest oross section; that tte «all 
of tte burster tubs roaohoo a tenpsratnre of about 350°C a fraotion of a seeond after 
tte oharge io fired, which toaporatare io high enough to oaaao THT to dotoaatof aad 
that a thin layer of Insulating material on tte outside of tte burster tube io ade- 
quate to keep its tempersture bolow a safe limit.   A supplementary solution for aoo 
with small t io given. 

1«    INTRODUCTION 

In several respeots it if Important   to bo able to ootlaato tte transfer of teat from tte 

propellent gases to tte ooafiaiag «alia of rookoto«   Amy ooaploto system of iatoraal balliotioo 

must depend on suoh as ootlaato«   Tte heating of trap wires imposes a restriction on design of 

traps.    In tte 4-1/2 In. rookot «1th burster tuba, which io tte principal dories dlooaoood in 

ooaaootioa «1th tte present theoretical tree- particular interest attaches to tte offoot of 
tte heating on tte high explosive la tte burster tube« 

Tte treai of tte physioal problem will folio« tte pattern outlined by Hirsohfelder, 
*    2a solving tte equation«, however, tte powerful operational oaloulus of 

of teplaoo transforms «HI bo used.   Tte aeoureey of tte results thus Beavioido aad the 
obtained lo limited by oar assumptions oonoerning tte physioal properties of steel aad TIT. but 
it lo believed that enough information lo obtained to help la oertain problems of dssign, parti- 
cularly of tte burster tote ia tte 4-1/2 la« rookoto. 

Zt lo assumed throughout that tte density of gas flow aad the tempsrature of the gas are oon- 
«taat during tte burning. Actually, both tte deorease la pressure aad increase la tte area of tte 
channel as the gas flowe through tte Utter toad to aako tte density of flow lose toward tte aad 
of tte burning interval.    In via« of tte faot that tte heat-transfer ooeffioient h «HI bo chosen 
to fit an sxportmontsl result, tte prlnoipal offoot of this erroneoue assumption oonoerning con- 
stancy of flow density aad temperature la to distort tte distribution of temper«ture, but probably 
not to latrodaoo large errors la tte calculated values of total teat transferred.   Change« ia tte 
volume    thermal capacity aad thermal conductivity «1th temperature are neglected, dooplto tte faot 
that tte then»! oanduotivity of otool first increases above room temperature aad 

trensf 
\J   J« 0. Birsohfelder, W. Garten. Jr.. aad 0« Hougen, Heat conduction, gas flow, and heat 
ifor la guns. IBBC &oport A-87 (OSRE 860).  ^ r - 
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u3 the temperature la raised further. The time-rate of transfer of heat across unit area of 

interface betveen the gas und the ratal is assumed to be fives, by the expression,-' 

mm - *<•▼) 0,e <*0 - v« w * 
in which ^ is the density of the gas, v. is its average velocity, and T and 7 are the tera- 

porature of E*s and surface, respectively,  hen^, v, and t, are in 0£s units, £ is in calories 

per square centimeter, and the temperature difference is in degrees centigrade, Z has the nu- 

merical value 0.0023 for smooth surfaces, and is somewhat larger for rough surfaoes. In terms 

of the heat-transfer coefficient h, 2q. (I) becor.ee dQ/'dt - h(T - T^. 

It should be stated at the outset that thero is a priori a large uncertainty about the 

value of the heat-transfer coefficient h appropriate to the surfaces in question. However, sinoe 

C« J». Boyd, of the Jet I repulsion Laboratory, Indian Head, I ieryland, has measured the . laximum ter- 

pcruture reached inside the .jell of the burster tube of the 4^-in. rocket after the burning of a 

r.or.-1 charge, the heat-tron if er coefficient can be estimated, und the related quantities deduced 

in turn« 

Three problems are considered: first, the distribution of temperature in walls bounded by 

parallel plane surfaces, these being taken to be satisfactory approximations to the '.vails with 

cylindrical surfaces actually encountered; second, the extent of meltlnr of the high explosive, 

supposed here to be T\T, in the burster tube of the 4." -in. or similar rocket; and third, the tem- 

perature distrlbtuion in cylindrical trap wires, 

*n outline of the results may be set forth briefly, »s previously pointed out, they depend 

on the value of 360 C found by Boyd for the maximum tenperature reached Inside the burster tube of 

the 4. -in. rocket. The corresponding heat-transfer coefficient h is 0.183 oal/em see °C, uhloh give 

h - 0.0038 ^v)0,8 oal/om?seo°C, 

where p  is the density of the gas in grams per cubic oentlmeter and v is its velocity in oentimeters 

per second. The rise in temperature on the inside of the wall of the tube 0.2 see after the start 

of burning is calculated to be 97 percent of the extreme rise. The temperature of the surface next 

to the gases rises to 730°C near the end of the burster tube during the burning of a normal charge 

of 7/8-ln. stick powder. If use is made of a eharge of powder with 1-in. web, weighing 6 lb, and 

burning 0.65 see, the maximum temperature on the inner side Is 540°C. If the inner surface of a 

burster tube filled with T..T is at 360°C, a layer of TIT less than 2 mm thick would be melted at 

the end of a flight of S sec. Insulating the surface next to the gas with a layer | ram thick of some 

substance similar to porcelain would reduce the maximum temperature reaehed inside the tube to about 

iao°c. 

The surface of the trap wires of the 4j-in. rocket in the region where the flow of gas Is great- 

est reaches about 1230°C, but the average temperature over the same cross section of the wire is 

only 10S0°C. A method for determining the radial distribution of temperature in the -.-.ire Is given in 

Tort V. 

1 öee footnote page 1. If an equation or its equivalent appears in the ..ppendix of this report, It is given the 
number of the equation in the appendix. Other equations in the text are numbered . ith Roman numerals 



II. HEAT TRANSFER TO TUB WALLS OF THE BURSTER TUBE 

We start «1th Eq. (I) expressed In the form, 

dQ/dt - h(To - T^, 

0.8 

« 
(ID 

in which the heat-transfer coefficient h has been written for K^v) wao. It is assumed that h 

does not vary during the burning of the propellent. The differential equation of heat conduction 

Is put In the form used by Henvlsldo, 

V*T -q*T. (Ill) 

Here V2 Is the Laplace operator and q Is written for eD/£ (where c_ Is the thermal capacity per 

unit volume,* Is the thermal conductirity, and D Is the tlns-dlffsrentiatlng operator, d/dt). 

Heariside showed -* that under certain conditions the problem may be solved by Integrating Eq. (Ill) 

with a. considered as constant, fitting the boundary conditions with the operational form of the 

solution thus obtained and then converting the operational to an algebraic form. Wo usually require 

that the problem be reducible to one dimension, and that the quantity governing the condition of 

the system, such as a temperature or rate of flow of heat, be zero up to the Initial time. It should 

be explained at this point that the zero of the seals of temperature Is arbitrarily chosen es that 

of the initial state of the system. In this report temperatures will be referred to 20°C. 

The problem of transfer of heat to the burster tube in the 4&-in. rocket is considered as one 

of transfer to a wall of infinite extent bounded by parallel plane surfaces. It is supposed that 

conduction of heat through the inside surface of the wall is negligible in the Intervals of time 

of interest here, so that one boundary condition is that at the inside surface dT/dx - 0. The 

other boundary condition expresses the equality of the heat transferred to the surface next to the 

gas and the heat conducted away from the surface; the corresponding equation is 

h(T0 - Tx) - -AfcT/JxJj. (s) 

The subscript 1 attached to the differential coefficient indicates that it refers to the surfaoe 

adjacent to the hot gas. The form of Eq. (Ill) approplrate for our one-dimensional system is 

dfydx8 - i8?. (!) 

The solution in operational form is T - A«*** ♦ Beqx.   It is shown in the Appendix that when the 
boundary conditions are imposed this becomes 

T . I wrt ad - |l T , 
h cosh qa ♦ k. q sinh qe    °' 

and that T is given in algebraic form by the expression» 

(8) 

(1?) 

-* 0. Heaviside, Elactromaxnotlo theory ("The Electrician" Printing and Publishing Co., London 
1899). In further references this work will be designated as "Electromagnetic theory": 

- 3 - 
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la which ö takes the values of sll the positiv«   roots of the equation, 

<*cos 0 - e  sin 9. (16) 

In Iqs. (8) and (17) £ Is taken as increasing from zero as it goes through the «all from the sur- 

face next to the gas, a is the thickness of the «all, a.  Is defined as ah/*, and £  is defined as 

a2o/ft. 7« take the density of stssl to be 7.6 gm/cm3, Its specific heat to be 0.11 cal/gB» °C, 

and Its thermal conductivity to be 0.11 oal/oa see °C. The thickness of the «sll of the burster 

tub« is approximately 0.S em. In the 4&-in. rocket loaded with a normal charge, 1.8 kg of powder 

is In front of the end of ths burster tub«. This exhausts In 0.2 sec through a channel with a 
e 2 

median area of cross «setIon e ;uul to 57 cm , giving an average density of flow of 160 gm/cn sec. 

7« find that»! probably lies in ths interval from 0.35 to 0.95, and that ß  is equal to 0.70 m». Tdth 

thess values of the parameters, and «1th t, not too small, the series of Iq. (17) converges very 

rapidly. For t, equal to 0.1 see, two terras of the summation suffice for accuracy to 1 part in 

100. For .t loss then 0.1, one ean use the series of Iq. (57), See. 6 of the Appendix. 

By Integrating over the thickness of ths «all, on« ean determine the average temperature at 

a given time t1§ for exanple, the burning time of the propellent. It is 

V ? ■ To - KZwrnmrrPi (IV) 

«bar« th« values of ö are glv«n «gain by Iq. (16).   The derivations of this and following equations 
are given in the Appendix.    The value of T at the end of the burning time is a good approximation 
to ths maxlmmt temperature reached inside th« burster tub«, a« radiation and conduction oould tot 
bs expected to change th« heat content of the «sll rapidly.   By calculating T for a series of values 
of at using 3200°K for th« temperature of the gas, it «as found that th« experimental figure, a 
riss of about 340°C, is givsn with 4 equal to 0.5.    This figure corresponds to a value of 

0.0032 eal/| -0.4. s°-V 0.8 o„ 

for th« coefficient K in th« expression for th« heat-transfer coefficient h, which means that the 
«urfaoe in question is not effectively smooth. 

Th« distribution of temperature after th« burning of th« propellent «as determined by using 
ths usual Fourier analysis.    It «as assumed that no heat «as passing through either side of th« «all. 
If «s writ« 

■FO 

Ths practical solution of this aquation Is treated in S«e. 5 of th« Appendix. 



feee Eq. (a) In the Appendix] we get 

'o-TAo 

- •- 

(V) 

r •' V* 

• 

g»wlLuv-#£<«♦ !)♦•■] (**»  .   (80) 

In the last three equations %1  repxeeente the burning tiae of the propellent. Figures 1 to 3 

show the temperature as e function of position and tiae, ee given by Eqs. (17), (18), (▼), end 
(80), with O. - 0«9,£ - 0.70 eee, %x - 0.80 sec, and TQ - 3200°K. Zt ie significant that e 

tenperature high enough to start decomposition of HIT le reached e small fraction of e second 

after the charge starts to born. 

Zt would be expooted that if the tiae ie short in comparison with fi, the quantity of heat 

transferred to a wall of finite thickness would be slightly less than the value for a semi-infinite 

solid, ae the reflected ware would hare little effect on the tenperature of the hot surface. The 

ralue for the semi-infinite solid provides a convenient approximation and permits aeeurate evalua- 

tion of «he correct figure for the wall of finite thickness by means of deviation curvas. For the 

semi-infinite solid we have the boundary condition of Eq. (5) and the condition that T approaches 

aero when x inoreases without limit. The operational solution [see tq. (30) In thle Appendix] le 

T hy6TB 
Q.-S t • 

h ♦ v€*TJ 

Since f°, the approximate value of fQ, la Q/acTo, we get from Eq.  (38) the algebraic for«. 

<•»•£ [ - U'toffi)* 
r(»t*) 

Figure 4 and Table Z give£f°/dt aa a function ota<A%i.   Figure 8 gives the deviation curves, 

aa a function of d for a series of values of t/fl.   figure 6 provides a Mane of estimating f° 
accurately.    Zt la the deviation curve showing the difference between 

ß f°/eft and *     ■     ■   . 
" 1 ♦ (3/4) dvij 
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Table I. Heat transferred to a aoal-lnfInlte solid In tim 
of the heat transfer coefficient and the properties of the solid. 

•<ffl fifjax tv<F fify* a<AIfi /*>* 

0.0 1.000 0.S 0.780 1.0 0.556 

•1 0.989 .6 .680 1.1 .531 

•1 .867 .7 •644 1.8 .509 

A .818 •8 .618 1.3 .498 

«4 .763 .9 .683 1.4 .469 

The use of Figs. 5 and 6 nay be Illustrated by calculating the temperature reached inside the 

burster tube of a standard 4^-in. projectile when the propellant charge consists of a single grain 

of powder, weighing 6 lb, burning in 0.65 see, and giving a gas ten^erature of 2800°E. It is 

■opposed that the total length of the charge is 11 in., with A in. of this length extending behind 

tne burster tube. The median port area le found to be 46 em' and, since only 9 in. of powder con- 

tribute to the flow, the median density of flow is 75 gm/cn'sec and h, is 0.101 eal/cm*»«c °C. 

The corresponding values of oLand t/fl are 0.875 and 0.93, end the other quantities that determine 

«land fi are as previously given. From Fig. 6 we find that ToTdLv^Jft equal to 0.864, 

' *>* * 1 g (3/4) (0.864) - °-°°3 * °-838- 

Xa !!«• 8 we find that when tf is 0.875 and X/ß le 0.93, 

fltJdLX -£f°/a*t - 0.011 - 0.881, 

for which we get fQ ■ 0.809.   The rise in tonporature is found from Iq.  (V) to be 588°C, maklag 
the madw temperature on the Inward aide of the wall of the burster tube about 540°C. 

Aa estimate of the error Introduced by neglecting the cylindrical form of the burster tube 
was made by comparing the heat transferred to unit surface of a eeni-infinite solid with a plane 
wall, with that transferred to unit surface of a solid cylinder of the sane diameter as the outside 
of the tube, under the conditions previously given for the usual charge.    The method of making the 
calculation for the cylinder appears in the-Appendlx.    The orror turns out to be only 0.45 percent, 
which is negligible in comparison with the errors associated with the assumption that the properties 
of the stsel do not change with teiperature. 
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III» MR OF MATING ON TNT IN THE BURSTER TUBE 

In a test carried out at the request of Division 3, H. Henkln of Division 8 observed that 

TNT In a sealed tube detonated after £5 eee at 360°C. Clearly It would not be safe to use an un- 

insulated burster tube In the *£.-in. projectile of the present design, unless the ebsorptlon of 

heat by the melting of the TNT gives a substantial cooling of the «all. Neither the date on liquid 

TNT nor the solution of the mathematical problem required for a determination of the cooling Is 

available. The magnitude of the effect may be estimated by solving the problem on the assumptions 

that the thermal conductivity and thermal capacity per unit volume are the same for liquid as for 

solid TNT, and that the inward side of the «all Is a plane surface kept at a constant temperature. 

In a solution attributed to Frans Neumann,*' it is found that the melting surface recedes from the 

heated surfaoe in such a «ay that Its distance Z is proportional to t V* and that the total 

amount of heat transmitted from unit area of the «all In the time t, Is 

         4 rtVb/i* 
4 - **WiT(T. - H) / v*/«  azp (-£x*) dx, (VI) 

«here the proportionality factor, 

*>*/t* , (VII) 

is given as a root of the equation, 

(Tg - M) (1/v^t) sxp (-/ c/44f) (%te exp  (Vo/4*)     Vgyj (vm) 

frvbTIi 
vi7iy     oxp (-foc')dx    4ovfiT M    v^/tr   I      exp (-£i')dx 

Jo Jo 
In these equations T» Is the constant temperature of the «all, c, andk refer to TNT, IE is the melt- 
ing point of the TNT, L Is its heat of fusion, and £ is its density.   £• Uutehlnson ^ has given 
the thermal conductivity of TNT at 30°C as 51.1 x lo"4 «att/om-C,(or 1.22 x lo"3 oal/cm-sec -°C), 
ths density as 1.67 gm/cm', and the diffuslvity i/o as 1.94 x 10"3 cm*/sec.    The value 93.5" ♦ 3.5 
Joule/pn or 2£.3oal/gm, is given by the International Critical Tables for ths heat of fusion at 
60 Ct the melting point.    The proportionality factor7and the coefficient of t* in Eq. (VI) were 

calculated for two values of the tecperature of the «all, 340° and 360°C, both with initial tem- 

peratures of S0°C. The results and some related figures are given in Table II* 

Table IX. Hate of melting of. and heat absorbed by. TNT. 

Temperature of «all (°C) 340 360 

7(om/seei) 0.067 0,070 
Q/t ""   (cal/cr^seci) 10.9 11.9 
4 for t - 0.2 seo (eel/cm") 4.9 5.3 
Z for t - 0.2 seo (cm) 0.030 0.031 
L for t ■ 5 see (em) 0.15 0.16 

^Weber-Riemann, Partielle Differential-Gleichungen, vol. II, p. 117. Apparently the only 
restriction on this solution is that the densities of solid and liquid be the some. 

£/"The thermal conductivity of explosive material«," Advisory Council on Scientific Research 
and Technical Development Report A. C. S861, Oct. 15, 1942. 

- 7 - 
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A decrease of S cal/cm* In the heat content of a «all of steal 0.3 on thick would correspond 

to a drop In temperature of about 19°C. Thus, cooling by the TNT could hardly keep the maximum 

temperature of the inward side of the wall below 340°C. On the other hand, the thickness of the 

layer of TNT melted is so snail for moderately abort tines of flight that It would not bo expect- 

ed to interfere with the detonation of the whole nass. 



IV« EFFECT OF A LAYSi OF IN3UIATI0N ON THE ABSORFTION OF HEAT BY THE BURSTER TUBE 

If a layer of insulating material is Interposed between the gas and the wall of the burster 

tube, nuoh less heat is transferred to the wall because the surface of the Insulating material 

reaches a much higher temperature than would a steel surface. The ezaet calculation of the transfer 

of heat .through an Insulating layer Is unduly complicated, but an upper limit for the heat trans- 

ferred nay be calculated easily by assuming that the surface of the insulator adjacent to the wall 

Is kept at the Initial temperature during the burning of the charge. Under this assumption we 

find that £, the heat passing through unit area of the outer surface of the Insulating layer in 

the time t, Is given by the expression, 

*- MV 
l«*i   **•*(*(«♦ i) ♦ ej 

(SB) 

In which the values of 0 are the positive roote of the equation 

«(sin • ♦ 6 cos e - 0. (8V) 

The calculation was carried out for an Insulating layer 0.5 mm thick having the thermal 

conductivity K and thermal capacity per unit volume £ of porcelrin.  We take 

* - 4 x 10~* oal/om seo °C, e - 0.6 cal/cm\ TQ - 2900°C, t - O.E see, and h - 0.103 cal/cm'sec °C. 

Then flt - £.£9 and P  - 0.375 eeo, and we find Q * 46 eel/en! The thermal capacity per square centi- 

meter of the wall with the Insulating layer Is (0.3)(0.86) • (0.05)(0.6) - 0.29 cal/cm' °C. Thus 

the upper limit for the rise In temperature le 46/0.£9 ■ 159°C, and hence the temperature will not 
rise above 180°C. Since the material chosen as an example is not an «specially good Insulator, and 

TNT does not decompose rapidly below £40°C, It la dear that the problem of providing adequate in- 

sulation for the burster tube when the atandard charge la used may be reduced to that of getting 

a thin layer of refractory material to adhere to the wall during the burning of the charge. If 

we make a similar calculation for the charge deeerlbed in Pert IX, weighing 6 lb end burning for 

0.65 seo, we find a limit of about 300°C for the maximum temperature; so we see that with such a 

charge the problem of insulation is more critical. 
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V.  HEATING OF TRAP V.TRES 

11» trap «ires In the Budd model of the 4|-ln. rocket ere 0.162 in. In disaster; that is, 

the radius is 0.206 en, so that it is certainly necessary to take account of ths cylindrical form 

of the wires in calculating the distribution of tsspsrature in the wires, or even the average 

temperature st ths sad of ths burning time. The appropriate solution of the differential equation 

of heat flow is 

T - J0(iorjA, (IX) 

in which A is s function of ths tine chosen to satisfy ths boundary condition, 7Q represents the 

Bosssl function of ths first kind and seroth order, end jr is ths radius in the cylindrical coordi- 

nate system with axis in the axis of the wire. The Besssl function of ths second kind is not in- 

eluded because we require the temperature to be finite at the axis. Ths operational solution 

satisfying ths boundary condition on the transfer of heat is 

nJ^jiqr) 

hJ0(iqr1) ♦ UqjJ (iqr^ 
**. (38) 

where r. is written for ths radius of the wire. The corresponding algebraic form is 

, , T jz
m* Vi1 

(37) 
(*• ♦ 0') J0W 

with dL » rjtyK,   *■ rJc/K, and the values of j) are given by the positive roots of the equation, 

«*0W * **!<*>• (38) 

In computing the surface tenperature for snail values of .t it is convenient to use an asymptotic 
expansion of Sq.  (30), in the form 

Tx -MT0v4/«7 jl ♦ M(i -*) (t/8)1,g ♦ (B/3)(3/8 - CL*cf)it/ß) 

♦ tv* C3/8 -d ♦ (3/2)sf -et^t^)»'- 

♦ (VW) C63/188 - (9/8W* (13/8)da - 8**-A4] (t/*)B ♦•••].   (X) 

The proper value to use for the median density of flow post ths trap wires has not bssn determined 

with any certainty. It learns reasonable to suppose that it would bs somewhat larger than that 

on the outside of ths grains, since ths ratio of median burning surface to median port area is auch 

larger. However, sons of the gss probably escapes to ths outer side between the grains, which 

are arranged three on a wire. If we take 15 percent as ths part of ths gas from ths second grain 

that goes through the perforation of the grain farthest back, it oan bs shown that ws gst about 

190 gm/cn" seo for the median density of flow. v:e then find h - 0.21 eel/en" seo °C, and <* - 0.39. 

Figure 7 shows ths distribution of terperature In a wire for the conditions ot - 0.4, ß> - 0.33, 

T - 2900°C (corresponding to shout 3200 K), and t ■ 0.2 sec. Ths calculated surface tenperature 

is well below the melting point of the steel. It has bsen observed, however, that after use in one 

or two rounoj ths wires have a polished appearance, such as would bs expected if there were supsr- 

- 10 - 
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fielal melting. It may ««11 be that the value selected for tas density of flow la too small; It 

Is also possible that the neglected changes In the physical properties of the ateel with tem- 

perature would lead to a considerable error In defeat In the calculated temperature. 

Just as In the ease of the wall with plane surfaces, It la convenient to represent the total 

heat transferred from the gas In terms of the deviation from the value for the semi-Infinite solid. 

Figure 8 shows the deviations of 3/htTQ from ^°/htTQ, the value for the semi-infinite solid. The 

last quantity la the same as the fi f°/ett used In connection with the plane wall and given In Figs. 4 

and 6 and. Table X« Comparison of Figs. 5 and 8 make a apparent the abort time required to produce 

In cylinders significant departures from the conditions holding for the semi-infinite solid. 

1 
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APPENDIX 

Darivatlon of Equations 

1. Solution by Hoavielde method 

The differential equation for the rat« of transfer of heat across unit trea of interface be- 
tween the mediums la 

In which 

d»T/dx» - q«T, 

q» -£,£. Ear 

(1) 

(2) 

The complete solution of Eq. (1), considered at a total differential equation in T and x, is 

T - e^A ♦ e"^! (3) 

A and B are functions of ä and TQ, chosen to fit the boundary conditions, which are that 

h(l0-T1)--k(dT>ex)J (5) 

Equation (k)  expresses the condition that no heat flows through the Inward side of the wall (the 
elde away fron the hot gas), and Eq. (5), In which T~ is written for T(0), expresses the condi- 
tion that the flow of heat through the outer side, that is, at the Interface, Is determined by 
the difference in temperature across the boundary layer of gas. When we Insert T from Eq. (3) 

In Eqs. (It) and (5), we get 

qe**A - qe"1*B - 0 (6) 

and 

h(T - A-B) --k(qA- qB). 

With the values of A and B given by Eqs. (6) and (7), Eq. (3) becomes^ 

f -  h cosh q (a - x) 

(7) 

(8) 1 cosh qa *kq slnh qa*°* 

To simplify the notation and make the tise-differentiating operator appear explicitly, we put 

* ■ «hA, (9) 

* ■ *»cA, (io) 

D»eV*K. (11) 

V It is understood that all operands contain as a factor a function of t that Is zero for 
t < 0 and unity for t > 0. 

-21 - 



-22- 

Then we have 

T . * cosh vflP (1 - x/a)  T a (12) 

otcosh \^D ♦ v^D sinh v^D ° 

Heavlside has shown-' that operational solutions of this sort may be expressed in algebraic form 

as a series, developed in the following way. If we have a solution, 

it may be expressed algebraically as 

»-TOTO0». 

'•»♦EÄft 

(11*) 

(15) 

The summation is over the values of P, the roots of the equation F(P) • 0. The symbol F*(P) is 
used to denote the derivative of 7(3) with respect to 0, evaluated at P. ?c tQgOty this theorem 
to fiq. (12), we take 

F(D) »otcosh >fib ♦ v^5 sinh \£5   ■ (13) 

0(D) "tf TQ cosh v0D (1 - x/a). 03") 

Then we require the roots in P. of the equation I (P) • 0. It say be chown^ that ell the 
roots of the equation 

cosh s ♦ z sinh z - 0 

are pure imaginary numbers, so that all the roots P are negative real n iri-ors. Thus it is 

convenient to substitute i« for \0D, and uso the roots of the equivalent equation 

we now have 

H(v) "*cos «- | sin • - 0. 

PF« (P) - i8. H« to) 
n  n 

(16) 

where the ©n are roots of Eq. (16) with the index n indicating the greatest multiple of « not 
exceeding • •   Then, by Sq« (16), 

PF'(P) --i GBCCtf *D ♦« oos9 . n n 

Since P - ***£//*» the resulting expression for the temperature is 

M   ais-^cos [6    (1 - x/a)] 
T - T   -T £~ a • 

0     °n=5       [«tfc-H) ♦««] cose n n 
(17) 

er Electronacnetic theory, vol. 2, p. 127« 

« Churchill, Ilodern operational mathematics in engineering, p. 258. 
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At the «ad of the burning tine, say at the tine t,, the distribution of teaperatur* aav re re- 

presented by a Fourier series in the f ora 

T(t,) ■ To(f0 ♦ > fn cot m/*). 
n*1 

(13) 

This fors is chosen to make the distribution sy3»trical a* out x • 0 sad x ■ a, tc conform with 

the assumption that no hest flows throng the surfaces at any tine after t,. The coefficients f 

■ay be evaluated in the usual way, giving the results 
V 

f   • 
o 

4 -«Vs» 
»•««*♦*»♦*' 

f- -> 
IM**.  n1 

*    (m>0). 
^=rCn«n« -**)[*&*♦ 1) ♦ ••] 

n n 

Then the distribution of tenperatore after burning is given by the expression, 

*m**r*%iimm 
r    m»ir» (t - t,)i 1 
[-—7 jco.*Tx/aj 

(19) 

(20) 

(21) 

2.    Heat transfer to insulating layer 

In order to get an upper bound for the heat transferred to the «all covered with an insulating 

layer, we assuae that the interface between the insulator and the steel is maintained at the 
initial tonperature«   If we apply the sans symbols for the layer of insulation that ws used for 

the wall proper, we have the condition that T ■ 0 when x ■ a,  in addition to the condition of 

2q. (5).   We use the solution in the form of £q, (3), and get Sq. (7) and the equation 

oqlA ♦ s"q^ - 0 (22) 

for the evaluation of A and fc.   The resulting operational solution for T. is 

T. »f sinh qs T . 1 " k  PQK) sinh qa ♦ q cosh qs o 

The heat transferred to unit area from the gas in the tins t is 

(23) 

<-   /h(T0-Tt)dt, 

Q " ■**  B9F) sinh qa^ Jaoosb qa V 

Now ws substitute from fiqs. (9, 10, and 11) and obtain 

a ■ hD H Jffl co3h y/flD T . 
tsinh \fiiD ♦ \^"D cosh vf D   ° 

(2U) 

(25) 
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Th« expansion theorem may be applied hare to give 

Q ■ hT D o 
%-1 srrr tct^-iü 

-*t/ß i 

-*(*♦ 1) ♦«■ 

where the values of £ are the positive roots of the equation 

a sin • • 6 eos • • 0. 

Integration of Eq. (26) gives the result 

Q-hT ( t  .   z   UJ£±  } 
>|a*1       ^€-e«[o!(ot* 1) ♦§«]J 

(26) 

(27) 

(28) 

3. Transfer of heat to a semi-infinite solid 

In this ease the boundary conditions are (i) that the temperature approaches ssro as £ in- 

creases without linit, and (ii) the condition of Eq. (5). The operational form of the solution 

for the temperature of the surface is 

h 
T ■    i — T . T1  h*kq ° 

(29) 

This solution may be expanded in either ascending or descending posers of D, giving asymptotic 

and convergent series, respectively, for T^. The convergent series is convenient for the 

intervals of tine of interest in this report. The quantity actually wanted is g, or hü" (T - T ), 

which is found to bs 

-a^o 
1 ♦ (h/Oq ' ° (») 

'hT 1 
0    h  -i/a 

1 ♦-S-D 
t. 

We may expand the fraction in Eq. (30) by the binomial theorem and use the resulting operators 

according to the generalized definition, 

ji.m m     1"" (a ♦ 1) .awa 

applicable only for power series in t. The result is 

si - Mo%y 
n*o 

{- 1)n tovffc^ 
°'1        T(Jn*2) 

(3D 

(32) 

U. Distribution of temperature in cylinders 

The general solution of the equation 



; 

• bs written as 
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T - Jo (lqr) A ♦ Io (lqr) B, 

where JQ and TQ are the Beasel functions of the first and second kinds and seroth order. Since 

«s require the temperature to be finite when r • 0, we put B - 0 and 30 can immediately writs 

Jft(iqr) 

In which the subscripts 1 refer to the surface of the cylinder. The remaining boundary condi- 

tion is 

«w-k($)   • r-r, 

Fro« Sqs. (33) and (3U) we find that 
W (iqr) 

T"hJo(iy1J ♦HcqJ^(V1)
To' 

This equation is exactly analogous to Sq» (3) for the plans wall. 

Now put am. ^h/tc and *■ r* cA  •    Then 

(3ii) 

(35) 

T- T^. 
oU0(/=^) ♦ yFJJi J0(\^nJ)   ° 

(36) 

In order to got into the denominator s function that has real roots, we make the substitution 
4 * y/-ßD.   The denominator of the general tern in the solution expanded according to Heariside's 

expansion tnaorera Is 

Thus the algebraic form of T is 

■sf Ü 
0  °k C^STE (37) 

n'   0 rn' 

I 



-26- 

with the 4   given as the positive root« of the equation 

ocJo(fO - ft, (#0. (38) 

The laet equation depends on the relation J- (j0 - - JQ(*0* 

In the ease of the cylinder *e may take advantage of the possibility of expanding the Bessel 

functions in asymptotic series to get an asymptotic expansion for T , useful for calculating 

either the surface temperature or the heat transferred at small values of the time. We take the 

solution in the form of Bq. (36) and use the asymptotic expansion—' 

Jn(ix).^Lf-Oi^i21!. 
y/vFk nl (2x)B 

Since Q - D~1h(T
0 ■ T^» ■ «•* fr°a 3q. (36) 

-^=. _• 

Q - hD 
»-1 

V^/TD J  {y/-ei D) 
 o  

<aJ (v^jD) ♦ V
/-*DJ   (>/=£D)   ° 

(39) 

ttO) 

i 
On carrying out the division of the series for J   and J . ee get the expression o o 

Q- hlf1 V 
1 ♦ -SL [i ♦ 2u ♦ 6ua ♦ 2liu3 ♦ 126a14 ♦ ...] 

V*D 

in shich u is written for i(*D)~     .    He may now invert the series in the denominator to get 

4 - hD"1  [1 - Uau* 05d*- 8«)u» - (cW- 6W ♦ 2l*d)u» 

♦ (256clH- JbUtf3 ♦ 2564*- JocOu1* 

- (102U«5- »Jtfa** i920ot'- 11520* ♦ 50l4d)u5 ♦ ...]I 

0*1) 

or 

Q - hD"1 [1 -*(M»-1/2 ♦ a(ft - i)(sD)-
1 .<(*■ - * ♦ i) <ßD)-V* ♦ 

x       0*2) 
et (a» - £*« ♦«- fXAD)"' -*(aU - 2*3 ♦ ^*»- |«+{|pNr** ♦ ...]T0 

This equation may be integrated to give an asymptotic series for £ In the form 

—FS3—i» n     ,?'   " 
Equations (32) and (U3) may be compared to bring out the effect of the cylindrical form on 

the heating« The terms in Eq. (U3) corresponding to Sq. (32) are those multiplied by the highest 

eW Electromagnetic theory, vol. 2,  p. 21*0. 
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powors of at.   Wc night rewrite Bq.  (32) In the font 

Q - htT l'-%«r-SBK*(»,,H- 
to exhibit the correspondence between the two series. 

5« Solution of oi cos 8 ■ 0 sin 0 

We give at the end of this section a table (A-I) of solutions of the equation a cos 0 ■ 6 sin 6. 
Results for «1, ©- and 0. (good to within six, two, and one in the fourth decimal place res- 

pectively for all values of a between 0 and 5) nay be obtained by linear Interpolation In 

Tabls a-I. 

For email values of a we can proceed as shown In the following illustration! 

Scampis 1i Given a • 0.1 U| find WQ 

Prom the given table we find 0 < «Q < 0.1|8. A few rapid trials with a table of trigonometric 

functions and a slide rule or other calculating device narrowed 0 down to the Interval between 

0.36 and 0.37; and In fact we compute: 

0.36 tan (0.36) - 0.13550 

0.32 tan (0.37) - 0.1U351 

The usual Interpolation procedure gives 

we have used a table in which the trigonometric tangent is given to five decimal places and 

the argument in radians to two. Tet we have obtained accuracy within h unite in the fourth 
decimal place f or 0Q as shown by comparison rith the correct result 9Q - 0*36565577 which was 

got by using a more extensive table of tangents. The table actually used is that given In the 

"Handbook of Chemistry and Physics." 

We now consider a case where the given value of * is greater than 5 and hence lies outside 

of the range of the table. 

Example 2i Given <*- 6.5; find «.,. 

We know that 

« < H. < 2w. 

If we write ©1 " * ♦ 4, we have to solve the equation 

(« ♦ sO tan (« ♦ 4) - 6.5, 

or, what comes to the same thing, 
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(« *«0 tan •'-6.5, 0 <•*<«. 

We get some assistance ff OB tin given table by noting that 0± - U.O33690 f or a. - 5.0 and that 
the difference In 0^ for each Interval of 0.25 In * U roughly 0.02.    Hence «a might try aa an 
initial value of £, 

4 ■ 14.033690 ♦ 6(0.02) - MUM*!«*!, 

This turns out to be a good guess, and «a computet 

(3.11*1593 ♦ 1.00) tan (1.00) - 6.1*501 

(3.11*1593 ♦ 1.01) tan (1.01) - 6.6102. 

By inx*rpolation 

** »•» • \M'-\M* w • M"«"C 
ao that 

•,-■♦*- 3.11*159 ♦ 1.00312 - 1*.11*1*71. 

Finally, «a show ho« to find the value of ö if n > 3. 

tempi« 3i Given a - 3.0? find w? 

Since 7 « < «? < 8 n, 

let 

•7 • 7» ♦ •* - 21.991151 ♦ 49        0 < 4 < w, 

so that «7 tan 0. - 3.0 la equivalent to 

(4 ♦ 7«) tan 4 - 3.0. 

la know that the greater the value   of n, the cloaar doaa Ä   11« to nn.   Hence { 1« rather 
and «e seek it« value In that part of the table where the argument la avail.   By trial we 

(21.991151 • 0.13) tan (0.13) - 2.8921 
(21.991151 ♦ 0.1W tan (O.lli) - 3.1187. 

find 

By interpolation, 

4 - 0.13 ♦ bmtsJJm 1 0.01 - 0.131*76^ 
3.1187 - 2.8921 * 

•7 - 21.99115 ♦ 0.131*76 - 22.12591. 

^ This may be compared with the correct value, 4y - 1.00315011. 
& The correct value of £ is 0.131*76578. 
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i 

Sone fairly accurate fcrnulae for 6 M a function of <* have been devised. For instance, 

- 4 /05ot* 105) -   /{US« ♦ 105)» - (U20oeSTE200^ 
V 57TT25    t 

m 
la good to within one unit in the fourth decimal place for 0 5 a 5 5. 

also 

~ n«(2cc» 3) ♦ v*0*^» * 36a* 12<X« 
n 2ä*6 "       ■ (U5) 

is quit« good for large n. Even for small n it is fair, except n ■ 0. For n - 1, it is good 

to within one unit in the second decimal place for 0 < u< $.    For n - 2, it is good to within 

two unite in the third decimal place for 0 < * < 5. For n - 3, it is good to within five unite 

in the fourth decimal place for 0 <a< 5. 

We give the above formulas purely ae mather.iatical curiosities, since experience has shown 

that for the purpose of computing w for a specific n and a, the interpolation method given above 

is far handier than use of either (UU) or (U5). 

6. Solution by the Laplace Transformation 

We now obtain a solution 1J the problem treated in Sec. 1 suitable for computation with 

small values of the time t. 

It is required to obtain solutions T(x,t) for the "heat equation " 

» 
T , A 

<*x» 

under the boundary conditions 

(1*6) 

(i»7) 

did) 

and the initial condition 

T(x,o) - 0, Ui9) 

wherea>0. 

If we denote the Laplace transform of T with respect to t by T, then we have by definition 

TL * TL (x»8) - /• "* T(x»t) dt* 
(50) 

From (1*6), (hi) and (1*8) respectively we get 

äx*" •X V (51) 
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. 

«'  x«. •-«[J-Ti.H' 

ÖL- • 

(52) 

(53) 

The solution of (51) a« an ordinary differential equation in T   and z is 

TL • A cosh x \/i ♦ B einh x vs     , 

«here A and B are functions of s alone, to be determined from the conditions (52) and (53). 

They are easily found to be 

and B- | tanhx/i 

Hence, finally, 

B(v/stanhv/i**)        • (Vs tanh y/m ♦ *) 

TL (x,s) - aa* M a - in— . 
L      s(>/ssinh /a ♦ a cosh /s) 

No« in order to find T (x,t) we have to find the inverse of T (x,s) with respect to 

Laplace transformation» Hence-« 

T U,t) . «L [     «^coeh^Q-^ds 
v^-iao  ■(>/■ •*** \/i • * CO*» vD 

(5b) 

the 

(55) 

«here T is any real nusfoer such that all the poles of the integrand have a real part less than r. 

The origin is clearly a pole and it can be shotnr^ that all the other poles lie on the 

negative half of the real axis. Hence it is sufficient to take Y> 0 (Sketch 1). 

|  «-plane 

i" Churchilli "Lodern Operational üatheaatici in Engineering," p. 159 Theorem 5. 

w Churchilli "lodern Operational Uathematic« in Engineering," Chap. IX particularly p. 256. 
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In order to evaluate the integral (55) we made a change of path and change of variable. First 

we deform the path shown In Sketch 1 into a parabola in the s-plane whose equation ia 

R (e) ,.*flC 
This path ia shown in Sketch 2. 

SKETCH t 

It «111 be noted that this deformation can be effected without crossing any of the poles of the 

integrand. It may also be verified that because of the exponential factor' in the integrand the 

portion of the path joining the line to the parabola contributes nothing, in the limit, to the 

value of the integral. Hence the value of the integral is not altered. 

Now «e change the variable of integration by means of the transformation 

• --7* 

The path of Sketch 2 becomes, after reversing the sense of integration, a straight line in the 

y-plane parallel to the real axis and at a distance >/y above it (Sketch 3)« 

y-plane 

—-^-  JSF.  

SKETCH 3 

With this change of variable, the integral (55) becomes 

«c-*> ■■& r yu°?n[^Vcos]
yy (56) 

«here «e denote by L the path of integration shown in Sketch 3« No« «s replace the trigonometric 

functions appearing in the integrand by thoir values in terms of exponentials, 

iy   -iy iy   -iy 
»in y - e 2"

e  ;  cos y - 2—|j2— 
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aad than expand the integrands in powers of e J, 

Thus we get 

Upon making the change of variable u - ty2 this becomes 

"■° "" [vWi(n*f)]|^*i(n*§*t.*]n*1 

(S7) 

,-(2n4 2-«)"   /'•-u- [Vfa ♦ M2n ♦ 2 - x - t«)jn  
Ut y^ |ytu ♦ I (2n ♦ 2-xj][ V'SI ♦ 1 (2n ♦ 2-K «U0j 

t"» du 
n5T  • 

We now proceed to the evaluation of the integrale appearing m (57).   As a natter of 
convenience we note that these integrals are essentially of the form 

\n 
T   .1.    f    •"W" (» ♦ io)"   JL   , (58) 

«here n is a non-negative integer.   We shall make special use of the cases n ■ 0 and n - 1 ■ 

7.    Evaluation cf I 
1 

Let us define the function 

,w-.•* iV * - •*'[f - /•-•*]. 
Then 

f'  (a) - 2aF(a)-1 . 

Fron a well-known definite integral, 

.-*•. fit 

e^V 

*2(1 ♦/*) 

Integration of both sides with respect to x froo a to co gives 

(59) 

(60) 
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■o that 

acting j - 2, m «•t 

- 33- 

I  •"**--!-   /  * o>, 

on    aJLi 

V*   J     1  ♦T* 
0 

00     ^ß 

F(a)-i    f-2 dr. 

(61) 

(62) 

Using the integral expression for F given in (61) we can write 

2«-«V FU) - Ä 

Integrating with resort to 2 fron a_ to oo gives 

/ 1  *3T- 

/■ 
2»-lV r(s) *t - -1- 

/ 

•*-(■»♦*■)■ 

v» y <i ♦!•)(■■ ♦xf) 
(63) 

We note tfat following relation, which can be easily verified by differentiating both sites with 
respect to ai 

00 
-tV 1 P(x)dx - S-—[ru> -1 rUa)] . 

Equating the right-hand side of this identity with that of (63) and snltinlying both sides by 
jiH» get 

•H-M-i / (i ♦iW*fi) 

Upon asking the substitutions 
, w s •# 

this becomes 

Prom (62), 

os ■ 

-1— rbF(a)-sF(b)l -A     J    t-JÖ     . 
»-*«L J     v*    J     (w**a1)(w«*b») 

o 

(6U) 



-3U- 

J / 
O 

oo 

/ (^♦•»)c^*b«) 

■ 

'5/  1-^fc , 

If for the right «oat integral *e eubetitute it« ralua as given by (6U), wo get 

/ 
 aeiü 2_r 
(w» ♦ «■)(*» ♦b«)   (b»^tM 

bF(b) - aF(a) (65) 

We have 

yfi I (w» ♦ «■)(•• *b«) 

since the integrand 1« an odd function of the variable of integration. 

By UM of this sad (6b) and (65), 

OS 

/ 
00 

oo 

/ 

.-"-«to 
STgyCTB > 

«•sT* dw 
(w» ♦ •*)(«* *b« ) •*v*/ JHLL*L 

(»• ♦ «»)(*■ *b») 

oo 

•5/ 
• 09 

•rri [»0»)-»(•>] 

o^ aw 
(w» ♦ •■)(*■ *b») 

(66) 

Differentiation of both aide, of (66) with respect to b gives 

-i. /  2—&  -i- [m(b) - il 2—[r(b) - r(aj| 
y    (n ♦!*)(*♦»)•   b^rsL J     Cb-e\)"L J 

(67) 

— 
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db1 b"   °       v* y     (w ♦ ia)[w ♦ *]m * ' 
-09 

Si 

00 

/ 
r^w ♦ g))n -; ft(g ■ b)i 

(w ♦ ia)[w ♦lb] S"TT 

-1_£ 
(-i) «Idb1 V© > 

a-o 

ni to - o)a    a* ■ 
(■l)«(n - m)i db1 ■Ö 

Since ij I   can be computed by differentiating both sides of (66) m times, we have a 
.» © 

computing I . In particular, If we set n - 1 we get 

I- - I. ♦ 

a differs but little from b, on© can get useful approximte foraulae for I   *nd I,. •   By 
Taylor's Series, 

by (66) 

F(b) F(a) ♦ (b - a) F'  (a) ♦ > tfB f (a) 

I0-2 IF» (•) ♦^£F«(©)*^SilF«»« (a) 1 

Than 

I- - I   ♦ (b - o) -S. I A1     xo 

2 fF«(a) ♦ 

db 
b- a F-(a) 

^ 
• F»"(a) ♦ 

■ 2^.0) [r^«»-.)!^*. 

2 [f(a) 4 * ~fi - I y(a) *#. . . .] 
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F'(a) -2aF(a)- 1 , 

F»(a) - (U1 ♦ a) F(a) - a 

1^2 [kF(a) ♦ !]  , 

k-2b-c+a + 2a»(2b - c - a)^ 

Is a(2b - e - a) - 1« 

4 table (Aril) of F(x) for x batman 0 and 6 if provided.   For x * 1, linear interpolation la 
good to four decinal places, and for 0 $ x g I. llnaar interpolation la good to three decimal 



-37- 

: 

Table Mi * 

a l             ^ l              L 1       * 1       * 
0.00 0.000000 3.U1593 6.283185 9.424778 

•25 !             .480094 1          3*219099 !         6.322705 9.451223 
•50 1            .653271 3.292309 6.361620 9.477486 
.75 1            .77135$ 3-#ll35 6.399644 9.503533 

1.00 .860334 3.425618 6.437296 9.529**4 
1.25 i            .930756 3.485897 6.4739a 9.554863 
1.50 .968241 3.542166 6.509659 9.580092 
1.75 1.036197 3.594652 6.544473 9.604998 
2.00 1.076874 3.643597 6.578334 9.629560 
2.25 1.111839 3.669246 6.611220 9.653760 
2.50 1.142227 3.731838 6.643121 9.677580 
2.75 1.166884 3.771604 6.674032 9.701007 
3.00 1.192459 3.806765 6.703956 9.724027 
3 •25 1.213455 3.843514 6.732901 9.746632 
3.50 1.232272 3.876050           j 6.760660 9.766813 
3.75 1.249230 3.906545          ! 6.767910 9.790563 
4.00 1.264592 3.935157          I 6.814014 9.811878 
4.25 1.278569 3.962036         i 6.839204 9.832755 
4.50 1.291341          ! 3.987314          1 6.863515          1 9.853193 
4.75          ' 1.303056          | 4.011116          j         6.886970 9.873192 
5.00 1.313837          j 4.033570                    6.909595          | 9.892753 

•2 f       *2 
Table A-IX.      Table of F(x) . ex           t"J dy 

I till I Uil       j 1          * IM X Uil 

0.00 0.8862 1       1.25 0.3260 2.50 0.1868        ! 1       3.75 0.1290 
0.05 •8384        ! j       1.30 •3170 2.55 •1636        I 1       3*80 .1274 
0.10 •7945 1       1.35 • 3084 2.60 .1804 j        ?.85 
0.15 .7541        [ !       1.40 • 3002 1       2.65 •1774 3.90 .1244 
0.20 .7170        ' 1       1.45 •2924       ! !       2.70 .1745        i 1       4.00 .1214 
0.25 i      .6827        i 1.50 .2850 2.75 .1716 4.1 .1186 
0.?0 .6510        i !       1.55 2779       i !        2.8C .1669        ! j       4.2 .1159 
0*35 i      .6217         i 1.60 .2711 >       2.85 .1662 4*3 .1134 
0.40 •5945 1.65 •2647 !       2.90 .16* 4.4 .1109 
0.45 .5692        1 1.70 .2565 j       2.95 .1611 i       4.5 •1085 
0.50 .5456        ! 1.75 .2526        | I       *.00 .1566        1 4.6 •1063 
0.55 •5237        | I       1.80 .2469       , 3.05 •156?        | j       4.7 •1041 
0.60 .5032        ! 1.65 •2414 3.10 .1540 4.8 .1020 
0.65 •4840        j 1.90 .2362 !       ?.15 .1517        I !       4.9 .1000 
0.70 .4661        1 1.95 .2312 

1     3.20 .1495        | 5.0 •0981 

0.75 .4493        ! 2.00 .2263 i     3.25 •1474        | 5.1 •0963 
0.80 .4335        ! 2.05 •2217 3.30 •U53 j       5.2 •0945 
0.85 .4186        j 2.10 .2172        i 3.35 •U33        | 1       5.3 •0927 
0.90 •4046        t \      2.15 .2129 '     3.40 .1414        j 5.4 •0911 
0.95 •3914        ! i       2.20 •2088 1     3.45 •1395 5.5 .0895 
1.00 •2789 2.25 •2048 i     3.50 •1376        j !     5.6 .0879 

•C864 
•0850 
•C836 
•0822 

1.05 
1.10 
1.15 
1.20 

•3*72        j 
•3560 
•3455        1 
•3355        j 

2.30 
2.35 
2.40 
2.45 

.2009        j 

.1972 
•1936 
•1902       1 

3.55 
1     3.60 
i      3.^5 

3.70 

•1358        ; 
•13U       ! 
•1?23 
.1307 

5.7 
!       5.8 
'       5.9 

6.C 

(CS-t 3H1),   fart It "-IN*. 3 UN»*«!««».1 no 208, 209, 104 210. 
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